Analysing Bankruptcy Data with Multiple Methods

نویسندگان

  • Jukka Hekanaho
  • Barbro Back
  • Kaisa Sere
  • Teija Laitinen
چکیده

Neural networks have proved in many ways and in a number of publications to be real challengers to statistical methods especially to logit analysis in predicting failures. However, most of the studies have used a rather small data set, very often close to only one hundred observations. Therefore, it has been difficult to say whether there are any significant differences between the methods tested. In this study, we extend a previous study and compare rule-based learning with neural networks and logit analysis using a larger data set consisting of 570 companies. We investigate the effects of the prediction capabilities of the methods using different sample sizes and different time periods for estimation. Our study shows that in this domain neural networks and rule-based learning perform better than logit analysis, but there is substantial variation in the results depending on the sample size and

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genetic Algorithm in Development of Bankruptcy Predication Theory Case Study: Companies Listed on Tehran Stock Exchange

The bankruptcy prediction models have long been proposedas a key subject in finance. The present study, therefore, makes aneffort to examine the corporate bankruptcy prediction through employmentof the genetic algorithm model. Furthermore, it attempts to evaluatethe strategies to overcome the drawbacks of ordinary methods forbankruptcy prediction through application of genetic algorithms. Thesa...

متن کامل

Predicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model

One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization.  By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions.  The main objective of this study is to ev...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

A Modified Directional Distance Formulation of DEA with Malmquist Index to Assess Bankruptcy

Bankruptcy in the same amount of time and history is very rampant and therefore the vision of the future can be prevented. Using data envelopment analysis (DEA) and malmquist index can precise evaluating of the performances of many different kinds of decision making units (DMU) such as hospitals, universities, business firms, etc. In this paper, we will modify directional distance formulation o...

متن کامل

Rating Companies with Support Vector Machines

The goal of this work is to introduce one of the most successful among recently developed statistical techniques – the support vector machine (SVM) – to the field of corporate bankruptcy analysis. The main emphasis is done on implementing SVMs for analysing predictors in the form of financial ratios. A method is proposed of adapting SVMs to default probability estimation. A survey of practicall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998